Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covers and Envelopes in Grothendieck Categories: Flat Covers of Complexes with Applications

In the general setting of Grothendieck categories with enough projectives, we prove theorems that make possible to restrict the study of the problem of the existence of -covers and envelopes to the study of some properties of the class . We then prove the existence of flat covers and cotorsion envelopes of complexes, giving some examples. This generalizes the earlier work (J. Algebra 201 (1998)...

متن کامل

Injective Envelopes and (Gorenstein) Flat Covers

In terms of the duality property of injective preenvelopes and flat precovers, we get an equivalent characterization of left Noetherian rings. For a left and right Noetherian ring R, we prove that the flat dimension of the injective envelope of any (Gorenstein) flat left R-module is at most the flat dimension of the injective envelope of RR. Then we get that the injective envelope of RR is (Gor...

متن کامل

Injective Envelopes and Projective Covers of Quivers

This paper characterizes the injective and projective objects in the category of directed multigraphs, or quivers. Further, the injective envelope and projective cover of any quiver in this category is constructed.

متن کامل

Brown Representability and Flat Covers

We exhibit a surprising connection between the following two concepts: Brown representability which arises in stable homotopy theory, and flat covers which arise in module theory. It is shown that Brown representability holds for a compactly generated triangulated category if and only if for every additive functor from the category of compact objects into the category of abelian groups a flat c...

متن کامل

Covers in finitely accessible categories

We show that in a finitely accessible additive category every class of objects closed under direct limits and pure epimorphic images is covering. In particular, the classes of flat objects in a locally finitely presented additive category and of absolutely pure objects in a locally coherent category are covering.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2001

ISSN: 0021-8693

DOI: 10.1006/jabr.2001.8821